Strong excitonic nonlinearity in a P-I-N photodiode incorporating narrow asymmetric coupled quantum wells

C. L. Guo, Y. J. Ding, S. Li, J. B. Khurgin, C. T. Law, and A. E. Kaplan

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, Maryland 21218

K. K. Law and L. A. Coldren

Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106

J. Stellato

Harry Diamond Laboratories, Adelphi, Maryland 20783

Received January 31, 1991

A self-electro-optic effect device (SEED) consists of multiple quantum wells (MQW's) incorporated into the intrinsic region of a P-I-N photodiode connected in series with a load resistor. The SEED's exhibit optical bistability and have been used as an array of optical logic gates because they have a positive feedback provided by the quantum-confined Stark effect and an external load resistor. In the conventional SEED, the red Stark shift of the excitonic transition is used to provide this positive feedback. Its major disadvantage, however, is significant residual absorption. In an attempt to overcome this, the so-called blue-shifting SEED schemes were proposed and subsequently realized based on a strain-generated piezoelectric effect. Recently, we observed an anomalously large linear blue shift in narrow GaAs/Al$_{0.4}$Ga$_{0.6}$As asymmetric coupled quantum wells (ACQW's) near the anticrossing between strongly coupled heavy-hole (HH) (rather than electron as in Refs. 7–9) energy levels in two coupled QW's.

It would be advantageous if intrinsic feedback inside the MQW P-I-N photodiode were achieved instead of having to use an external resistor; this would result in substantial simplification of the integration and fabrication of the devices. Most recently, a new type of optical bistability in the conventional SEED's (i.e., with red Stark shift) was demonstrated based on the intrinsic feedback mechanism. Since the blue shift observed by us in principle holds a great promise for blue-shift SEED's, it would be important from the viewpoint of application to attain an intrinsic feedback similar to that in Ref. 10. In this Letter we report the observation of such a feedback in our structure. Furthermore, in contrast to Ref. 10, we observed the increase in the magnitude of the excitonic blue shift with increasing laser intensity, which suggests a more characteristic of blue-shift SEED's. We emphasize that the nonlinearity discussed here is strictly due to the feedback through the photocurrent and is not related to other types of nonlinearity in ACQW's.

The ACQW sample [Fig. 1(a)] used in this experiment was grown by molecular-beam epitaxy on a Si-doped (100) n$^+$ GaAs substrate. It has 25 ACQW individual pairs, each of them consisting of two GaAs QW's with thicknesses of 1.8 and 3.2 nm, which are coupled by a 1.5-nm Al$_{0.4}$Ga$_{0.6}$As barrier. A 10-nm barrier is used to isolate the pairs of coupled QW's from each other. The ACQW structure is sandwiched between undoped Al$_{0.4}$Ga$_{0.6}$As layers, each 300 nm thick. The entire undoped epitaxial layers were embedded in the intrinsic region of a P-I-N photodiode. Arrays of small mesa photodiodes, 250 μm in diameter, were fabricated; p-type ohmic contacts rings on the top surface (inner diameter \sim100 μm, ring thickness \sim50 μm) and an n-type ohmic contact on the back surface were formed by evaporation. The sample was then attached to the end of a cold finger in a cryostat and maintained at 78 K. An argon-pumped cw dye laser with Pyridine 2 was used as a tunable source. Photocurrent spectra were measured with a lock-in amplifier and later corrected for the gain curve of the dye.

In order to explore nonlinear effects, the reverse bias was fixed at -3 V, and the photocurrent spectra were measured for the range of laser intensities between 157 and 850 mW/cm2 [Fig. 2(a)]. According to Fig. 2(a), at low laser intensities, the excitonic transition peaks were barely distinguishable. The reason
the existence of a feedback resistance somewhere in the circuit. The increase in the laser intensity reduced the electric field inside the device and canceled the blue shift of the transitions $h_{1,2}e_1$. As a result, the peak of the transitions $h_{1,2}e_1$ has moved toward the lower energies. In our experiment, a downward shift of $h_{1,2}e_1$ of ~ 4.9 meV was observed when the laser intensity was increased from 173 to 850 mW/cm². The situation for the transition l_1e_1 is different. Owing to the proximity of the effective masses of the LH and the electron, l_1e_1 shows only the red shift, regardless of how the structure is biased. Therefore the intensity-induced reduction of the bias can move the peak of l_1e_1 only toward the higher energies, as seen in Fig. 2(a). In our experiment an upward shift of l_1e_1 of ~ 1.7 meV was observed when the laser intensity was increased from 173 to 482 mW/cm².

Since there was no external resistor in the circuit and the resistance of the contacts was low (according to current–voltage measurements of the device), the key to the nature of the feedback must lie within the structure of the device itself. On examination of our structure (Fig. 1), we conclude that the two 300-nm-thick undoped Al$_{0.45}$Ga$_{0.55}$As layers near the top and the bottom of the ACQW's act as barriers for photogenerated carriers. These photogenerated carriers thus accumulate at the opposite ends of the ACQW structure and screen the external reverse bias field (see Fig. 1(c)). This feedback mechanism was first observed in Ref. 10. Thus one can ascribe the effect observed in Ref. 10 and in our experiment to the intrinsic feedback through a photocurrent, which results in a (highly nonlinear) effective intrinsic resistance. This conclusion is further supported by the fact that the rest of the structure in both these experiments is significantly different: in comparison with the wide symmetric structure used in Ref. 10, our structure

![Image](image_url)

Fig. 1. Band structures of multiple ACQW's and two intrinsic feedback layers (the thick barriers) embedded in the intrinsic region of a P-I-N mesa diode (see the text for a detailed description of this structure). The three configurations are (a) flat band, (b) overbiased in reference to the HH energy levels (h_1 and h_2) in two coupled QW's, and (c) shining a high-intensity laser beam, which results in the accumulation of photogenerated electrons (filled circle) and holes (open circle) near two thick barriers (300 nm) and therefore brings h_1 and h_2 toward resonance. The arrow shows the direction of the electric field resulting from this intrinsic feedback mechanism.

![Image](image_url)

Fig. 2. (a) Typical measured photocurrent spectra shown at a constant reverse bias ($V_b \sim -3$ V) for different laser intensities: 157, 173, 188, 213, 428, and 850 mW/cm² for curves 1–6, respectively. (b) For a fixed reverse bias ($V_b \sim -3$ V), the energies of the HH and LH excitonic transitions ($h_{1,2}e_1$ and l_1e_1) are plotted versus laser intensity for the experimental data (dots) and theoretical simulations (dashed curves).
a laser intensity of ~270 mW/cm² (see the data shown as open circles in Fig. 3). This increase of the blue shift (compared with 6.1 meV at the lower laser intensity of 9.2 mW/cm²; see the data shown as the filled triangles in Fig. 3) constitutes a considerable enhancement of the Stark shift, to our knowledge never observed before. At a relatively high laser intensity, intrinsic optical bistability was observed by us. Our hope is that by optimizing the ACWQ’s structure a high on/off contrast ratio and a low threshold laser intensity in intrinsic optical bistable devices can be achieved.

In conclusion, the large excitonic nonlinear effect in the narrow multiple ACWQ structure has been observed for the first time to our knowledge using photocurrent measurement. The effect has been attributed by us to the intrinsic feedback mechanism due to the accumulation of photogenerated carriers near the thick barriers in the P-I-N photodiode incorporating the ACWQ’s. The blue shift of the HH excitonic transitions (h₁₂e₁) can be strongly enhanced by increasing the laser intensity.

The authors thank M. Yamanishi, F. M. Davidson, and G. Sun for valuable discussions. This research is supported by the U.S. Air Force Office of Scientific Research and the National Science Foundation. The calculations were done with the Cray YMP at the Pittsburgh Supercomputing Center.

References