AIP Conference Proceedings
Series Editor: Hugh C. Wolfe
Number 119
Subseries on Optical Science and Engineering
Number 5

Laser Techniques
in the Extreme Ultraviolet
(OSA, Boulder, Colorado, 1984)

Edited by
S. E. Harris
Stanford University
and
T. B. Lucatorto
National Bureau of Standards

American Institute of Physics
New York 1984
Extreme-Ultraviolet and X-ray Emission and Amplification by Non-relativistic Electron Beams Traversing a Superlattice

A. E. Kaplan and S. Datta
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907

Abstract

High-energy electrons emit resonant electromagnetic radiation when passing through a spatially periodic medium. It is conventionally assumed that ultra-relativistic electron beams are required to obtain significant emission. We demonstrate theoretically the feasibility of exploiting solid-state superlattices with short periods to obtain both spontaneous and stimulated emission in the far-ultraviolet and soft X-ray range using non-relativistic beams.

Introduction

Fast-moving electrons emit electromagnetic waves when moving from one medium into another with a different dielectric constant [1-3]. This is known as transition radiation and was predicted by Ginzburg and Frank [1]. In a spatially periodic medium the waves emitted at different interfaces interfere so that a resonant emission is obtained when the following condition is satisfied [2-4]:

$$\sqrt{\varepsilon} \cos \theta = c/v - n\lambda/\ell$$ \hspace{1cm} (1)

where λ is the wavelength of radiation, ℓ is the period of the spatially varying dielectric constant ε of medium (it is conventionally assumed that the variations are very small), v is velocity of the electrons (assumed normal to the interfaces), θ is the angle between the direction of wave propagation and electron motion, n is an integer, and ε is a "mean" ε. This condition is readily derived by requiring that the waves emitted at different interfaces interfere constructively at a distant point. Usually the period $\ell >> \lambda$, so that ultra-relativistic beams ($v/c \sim 1$) are required in order to satisfy Eq(1) for real θ. Recently the possibility of stimulated resonance radiation of ultra-relativistic (~ 50 Gev) electrons traveling through a stack of metal foils was considered [4], with $\ell \sim 7$ cm.

In this paper, we demonstrate the feasibility of using non-relativistic electron beams in order to attain both spontaneous and stimulated emission in the ultraviolet and X-ray range using solid-state superlattices with $\ell \sim 100$ Å so that $\ell/n\lambda \sim 1$. We show that the wavelength of resonant radiation and the required energy of electrons are determined by the parameter $Q = n\lambda_p/\ell$, where λ_p is a "mean" plasma wavelength of the medium. If $n\lambda_p \ll \ell$ (i.e. $Q \ll 1$), as is assumed in all previous work [2-4], then the wavelength of the resonant radiation has an order of magnitude of $\lambda \sim \lambda_pQ$, and the kinetic (dimensionless) energy of the electrons eU/mc^2 must exceed the critical amount $1/\sqrt{Q^2 - \theta^2} > 1$ ($\theta < Q$) which constitutes the use of ultra-relativistic beams. On the contrary, if the period of the spatially periodic medium is chosen so that $Q > 1$ (i.e. period ℓ is much shorter than the plasma wavelength, e.g. $\ell \sim 50$-200 Å), the wavelength of resonant radiation becomes of the order of $\lambda_p/Q = \ell/n$, and the critical kinetic energy of the beam turns
out to be extremely small: \(eU/mc^2 \sim 1/2Q^2 \), which may be less than a few kilovolts even for very short wavelength radiation. The advantages of the proposed method are: (1) the frequency of radiation can be easily tuned in a very wide range by simply varying accelerating potential of beam (which is very hard to do with ultra-relativistic beams) (2) the range of the possible angles of the wave propagation is almost unlimited, and (3) the cost of equipment and energy required for experiments with non-relativistic beams is insignificant compared to large accelerating machines. This last consideration is perhaps the most important.

The main requirements for non-relativistic short-wavelength resonant radiation is a periodic medium with a very short spatial period. Fortunately, the development of molecular beam epitaxy (MBE) and other techniques in recent years has made it possible to grow very thin films (\(\sim 100 \AA \) and less) with precise boundaries. Periodic structures composed of thin films of different materials, in particular superlattices, have also been fabricated [5]. Using these structures, non-relativistic electron beams with energies 20-200 KeV can be used to generate radiation of wavelength 100-200 \(\AA \) and less. The concept of EM radiation of electron beam in spatially periodic structures in general is known since microwave traveling wave tube amplifiers (with nonrelativistic beams) and their recent optical modification - free-electron lasers (with relativistic beams). An important feature of transition radiation discussed in this paper is that the electron beam travels through the material structure rather than in vacuum above the structure (as in traveling wave tubes), or through a spatially modulated magnetic field (as in many free-electron lasers). This makes it possible to use very short spatial periods. The problem is the energy transfer from the electron beam to the material structure causing heating and possible damages. This problem will be briefly addressed at the end of this paper.

In this paper, we show that resonant spontaneous emission with a total power of 0.1 mW (around a wavelength \(\sim 200 \AA \)) can be obtained with a 75 KeV electron beam carrying a current of only 1 mA. The spontaneous emission can be used as a narrowband source by selecting the radiation in a narrow angular range. To get stimulated emission with a gain of 5% per pass, however, requires a significantly larger current (\(5 \times 10^{10} \text{A/cm}^2 \)); to avoid sample burnout it will be necessary to use pulsed operation with pulse lengths ~0.1 ps, which is a difficult task. However, it should be noted that coherent sources are not available at these short wavelengths and getting significant stimulated emission is a difficult problem in general.

Spontaneous Transition Emission

We will first obtain the resonant wavelength of radiation from Eq(1) noting that [3] \(\ell \sqrt{\tau} = \ell_1 \sqrt{\epsilon_1} + \ell_2 \sqrt{\epsilon_2} \), where \(\ell_{1,2} \) and \(\epsilon_{1,2} \) are respectively the thicknesses and dielectric constants of alternating layers forming the superlattice, \(\ell = \ell_1 + \ell_2 \) is its spatial period. For short wavelengths (\(\lambda_2 << \lambda_{1,2} \)), \(\epsilon_{1,2} = 1 - \lambda_2^2/\lambda_{1,2}^2 \) where \(\lambda_{1,2} \) are the plasma wavelengths of the two materials forming the superlattice, \(\lambda_{1,2}^2 = 4\pi mc^2/e^2N_{1,2}^e \) where \(N^e \) is the density of electrons). Thus, the mean dielectric constant may be written as \(\bar{\epsilon} \approx 1 - \lambda_2^2/\lambda_{1,2}^2 \) where 1 - \(1/\ell_1 \lambda_{1,2}^2 + \ell_2 \lambda_{1,2}^2 \). Substituting this into (1) and solving it for \(\lambda \), one gets the resonant wavelengths:

\[
\lambda = \lambda_p \frac{Q}{Q^2 + \cos^2 \theta} \left[\frac{1}{\beta} \pm \frac{\cos \theta}{Q} \sqrt{(\gamma_{\text{cr}}^2 - 1)^{-1} - (\gamma^2 - 1)^{-1}} \right],
\]

where \(Q = n\lambda_p/\ell; \beta = v/c; \gamma = (1-\beta^2)^{-1} \), and \(\gamma_{\text{cr}} = [1 + (Q^2-\sin^2 \theta)^{-1}]^{1/2} \) is the
critical energy required for the excitation of resonant radiation. For \(Q << 1 \), \(\lambda \approx \lambda_0 (Q + \sqrt{\gamma_0^2 - \gamma^2}) \). Here \(\gamma_0 \approx (Q^2 - \theta^2)^{-1/2} \gg 1 \), such that only an ultra-relativistic beam can excite radiation. On the other hand, when \(Q >> 1 \), the critical kinetic energy turns out to be extremely low, \((eU/mc^2)_c \approx \gamma_0 - 1 \approx 1/2Q^2\), which is less than 10 KeV for all conventional materials if \(\ell \approx 100 \text{ Å} \). For sufficiently higher (but still non-relativistic) energies \(eU \), Eq(2) gives simply

\[
\lambda \approx \frac{1}{n} (\frac{1}{\beta} - \cos \theta) \approx \frac{\ell}{n} (\sqrt{mc^2/2eU} - \cos \theta); \quad eU << mc^2 = 0.51 \text{ MeV}.
\]

For instance, if \(\ell = 100 \text{ Å}, n = 1, eU = 75 \text{ KeV}, \) and \(\theta = 45^\circ \), one has \(\lambda = 113.6 \text{ Å}; \) for \(n = 10, \lambda = 11.3 \text{ Å} \).

The resonant radiation (i.e., spontaneous emission in the system) can provide a narrowband source of radiation. A single electron traversing a multilayer structure with \(N \) layers radiates energy \(I \) in the solid angle \(d\Omega \) in the frequency interval between \(\omega \) and \(\omega + d\omega \), given by [1-4]

\[
d^2I/d\omega d\Omega = (d^2I_0/d\Omega d\omega) \cdot 4\sin^2(\xi\ell/\ell)\sin^2(\xi N/2)\sin^2\xi
\]

(4)

where \(\xi = (\frac{1}{\beta} - \sqrt{\gamma} \cos \theta)\pi \ell/\lambda \), and \(d^2I_0/d\Omega d\omega \) is a radiation produced by a single interface. According to Ginzburg-Frank theory [1-3], for non-relativistic electrons \((\beta^2 << 1) \) and small variations of \(\varepsilon \), \((|\Delta \varepsilon| = |\varepsilon_1 - \varepsilon_2| << \varepsilon) \) the distribution of single-interface radiation is given by

\[
d^2I_0/d\Omega d\omega = e^2\beta^2[\Delta \varepsilon(\omega)]^2\sin^2\theta/4\pi c
\]

(5)

If the number \(N \) of layers is sufficiently large, \((N >> |\varepsilon/\Delta \varepsilon|) \), Eq(4) provides for very narrow spectral peaks of radiation for each particular angle \(\theta \) (with central wavelength determined by Eq(3)), which also implies that any frequency is radiated in a very narrow intervals of angles. Noting that \(\Delta \varepsilon = \lambda^2(\lambda_1^{-2} - \lambda_2^{-2}) \), and integrating Eq(4) over \(\omega \) and \(\Omega \) (with \(d\Omega = 2\pi \sin \theta d\theta \)), one gets the total radiation in each order \(n \)

\[
I \approx 16e^2L\ell^2(\lambda_1^{-2} - \lambda_2^{-2})^2\sin^2(n\pi\ell/\ell)/3\beta n^4\pi,
\]

(6)

(where \(L = N\ell/2 \) is the total thickness of the structure) with the wavelengths of radiation being in the range \(\frac{\ell}{n}(\frac{1}{\beta} - 1) < \lambda < \frac{\ell}{n}(\frac{1}{\beta} + 1) \). The total energy of radiation increases as speed \(\beta \) decreases. In order to calculate the power of resonant radiation emitted by an electron beam with an electrical current \(J \), one must multiply Eqs(4)-(6) by \(J/e \). If \(\ell = 100 \text{ Å}, \ell_1 = \ell_2 = \ell/2, L = 1 \mu \text{m}, eU = 75 \text{KeV}, J = 1 \text{mA}, \) and \(\lambda_1 \approx 400 \text{ Å} \) (e.g., \(\text{Zn, Cu, Ag or Au} \)), \(\lambda_2 \approx 800 \text{ Å} \) (e.g., \(\text{Si or Ge, see [6]} \)), the system can provide a radiation of first harmonic \((n = 1) \) with a total power \(\sim 0.1 \text{ mW} \) and a mean wavelength \(\sim 200 \text{ Å} \).

Stimulated Emission (Amplification)

We will derive now an amplification caused by the stimulated emission. This effect may be viewed in the following way. An EM wave having a wave vector component \(k_z = k_0 \cos \theta \) along the axis \(z \) (which coincides with the electron trajectory) produces the higher order spatial harmonics with \(k_n = k_z \pm 2\pi n/\ell \) which is due to the periodicity of medium. The phase velocities of these harmonics along the axis \(x \) are, therefore, \(v_n = c/\sqrt{\varepsilon(\cos \theta \pm 2\pi n/\ell k_0)} \). If the resonant condition (1) for \(\lambda \) is fulfilled, one of these phase velocities coincides with the speed of the electron that results in an exchange of energy between the EM wave and the electron. For some
frequencies in the neighborhood of resonance, the electron loses energy to the EM wave; this results in a coherent gain of the wave, or stimulated emission.

Essentially, this resembles a common mechanism of amplification for many kinds of microwave devices based on the interaction of electrons with “slow” EM wave. The important point is to find the intensities of the resonant spatial harmonics of the field. In all the previous work on resonant radiation [2-4] it is assumed that $\lambda << \ell$ (which is always valid in the ultra-relativistic case, see the introductory section). This allows one to use the WKB approximation. This approximation is not valid in our case since λ may be of order or longer that ℓ. Instead we will find a solution of the exact wave equation (with periodic parameters) based on the assumption of smallness of variations of susceptibility (i.e., $|\Delta \epsilon/\ell| << 1$, which is always true for short wavelengths); no assumption is made regarding the ratio λ/ℓ. Furthermore, the spatial variation of $\epsilon(z)$ is usually approximated by a cosine function [2-4]. In this approach, the relative amplitude ρ_n of the n^{th} harmonic of the EM field is $\rho_n \sim (\Delta \epsilon/\ell)^n$, so that for small $\Delta \epsilon/\ell$ the n^{th} harmonic is negligible for all but the smallest $n (= 1)$. In our approach, we can treat any arbitrary function of $\epsilon(z)$, in particular the true rectangular function. We show that ρ_n falls off algebraically like the Fourier coefficients of $\epsilon(z)$. Significant radiation is expected even for large n provided the interfaces are sharp enough. In this paper, we approach the problem using a single-particle picture which provides direct insight into the mechanism of the electron-EM wave interaction. The problem can also be treated using either the Boltzmann equation [4] or a quantum mechanical formalism; we plan to address these aspects in a subsequent publication [7].

We consider the exact Maxwell equation for the EM field [9] with $\epsilon(z)$ being an arbitrary periodic function in z. We assume a plane wave; it can be shown that only the EM wave with its electric field \vec{E} polarized in the plane of incidence (i.e. plane x,z) may be amplified by the beam [8]. By virtue of the Floquet’s theorem for wave equations with periodic coefficients [9], any component of the EM field can be written as a sum of spatial harmonics:

$$u = u_0 \exp(iK_0 \tau - j \omega t) [1 + \sum_{n \neq 0} \rho_n \exp(2j\pi z/\ell + j\phi_n)];$$

(7)

where $K_0 = k_0 \sin \theta + k_0 \zeta \cos \theta$, and ρ_n is the amplitude of the n^{th} spatial harmonics. We make the conventional assumption that there is no retroreflection, which is valid if $N |\Delta \epsilon/\ell|^2 << 1$, and $|\Delta \epsilon/\epsilon_0| << \cos \phi$. This assumption is strictly true in the vicinity of $\theta = 45^\circ$ (see [8]). Substituting the EM field in the form (7) into the Maxwell equations, collecting the terms with $\exp(jK_0 \tau + 2j\pi z/\ell)$ for each particular n and retaining only terms that are first order in $a_n<<(\cos \theta)$, where the a_n’s are the Fourier coefficients of $\epsilon(z)$:

$$\epsilon(z) = \tau + \sum_{n=1}^{N} a_n \cos(2n\pi z/\ell + \phi_n),$$

one gets the amplitudes u_0, ρ_n of the spatial harmonics of nonvanishing components of electric and magnetic fields (E_x, H_y, E_z): $E_x = E_o \cos \theta$; $H_y = E_o \sqrt{\varepsilon}$; $E_z = -E_o \sin \theta$, and

$$\begin{pmatrix}
 \rho_{x_n} \\
 \rho_{y_n} \\
 \rho_{z_n}
\end{pmatrix} = \frac{a_n/2}{q(2\cos \theta + q)} \begin{pmatrix}
 1 + q \sin^2 \theta / \cos \theta \\
 1 + q \cos \theta \\
 1 - q \cos \theta - q^2
\end{pmatrix};$$

(8)

where E_o is the amplitude of the principal harmonic of total electric field, and $q = 2\pi n/\ell k_0 = \lambda n/\ell \sqrt{\varepsilon}$. Further calculations are based on the conventional
model of energy exchange between the EM field and an electron which is used, e.g. in the theory of free-electron lasers (see e.g. [10]). From the Lorentz equation \(d\beta /dt = e(\vec{B} \times \vec{E}) \cdot \vec{v} \), one gets the equation for the energy \(\ell = \gamma mc^2 \) of electron

\[
d\ell /dt = e(c \vec{E}) = e(c \vec{E} \Delta \vec{B} + \vec{E} \Delta \vec{E});
\]

where \(\vec{E} = E_0(t,t) \) is the field at the instantaneous location of the electron, \(\vec{B} \) and \(\vec{E} \) are unperturbed vectors, \(\Delta \vec{B} \) is a small perturbation of electron velocity due to interaction, and \(\Delta \vec{E} \) is a small perturbation of the field seen by the electron due to its spatial displacement in respect to the unperturbed trajectory, i.e.

\[
\Delta \vec{E} = \frac{\partial \vec{E}}{\partial z} \Delta z(t); \Delta z = c \int_0^t \Delta \beta \, dt
\]

For the assumed polarization of the field, it follows from the Lorentz equation that

\[
\Delta \beta = \frac{e}{\gamma mc} \int_0^t (E_x - \beta H_y) \, dt; \quad \Delta \beta_x = \frac{e}{\gamma mc} \int_0^t E_x \, dt
\]

In Eqs (9)-(11) one has to take into account only that particular \(n^{th} \) component of the wave which is "resonant" to the speed of electron, i.e. that one with \(|\xi - n\pi| < \pi \), after substituting \(z = c\beta t \) and the amplitudes (8) of the proper resonant harmonic of \(E_x, H_y \) and \(E_y \) into (9)-(11), integrating over the temporal interval \([0,\tau = L/\beta c] \), where \(\tau \) is a time for an electron to pass through the superlattice, one has to average the result over all the possible phases \(\phi_n \) of the relevant field harmonic. We denote this operation by angle brackets. Note that the term \(\langle \vec{E} \rangle \) in (9) vanishes, i.e. the stimulated emission is only due to changes in the electron motion caused by the field. Finally, one gets the total averaged change of the electron energy per pass:

\[
\langle \Delta \ell \rangle = \pi \varepsilon E_0^2 L^3 \frac{1}{m^2 \ell_0^2 \omega} \cdot \frac{\nu_n}{\nu_n + \nu_n} \frac{1}{\nu_n \pi} \frac{\rho_x \cos \theta \rho_x \cos \theta - \beta \sqrt{\ell_0^2 \rho_y} \nu_n}{\omega} \times
\]

\[
(1 - \cos \nu_n \pi + \gamma^2 \rho_x^2 \sin^2 \theta (2 + 2 \cos \nu_n \pi + \nu_n \sin \nu_n \pi));
\]

where \(\nu_n = \omega / \sqrt{\xi} = \beta (\xi/n - \pi) \) is a resonant factor. For some \(\nu_n \), the change of energy \(\langle \Delta \ell \rangle \) becomes negative which constitutes the gain of EM field, \(\langle \Delta \ell \rangle_{EM} = -\langle \Delta \ell \rangle \). In the non-relativistic case, the main contribution to the change of energy is due to \(z \)-components of \(\Delta \vec{B} \) and \(\Delta \vec{E} \) i.e., in

\[
\langle \Delta \ell \rangle_{EM} = a_n^2 \varepsilon E_0^2 L^3 \sin^2 \theta (1 - \cos \theta)^2 / \pi^2 \ell_0^2 \beta \lambda
\]

In order to obtain an amplification \(\Gamma \) per pass in the system bombarded by an electron beam with the density of electric current \(i/(\text{A/cm}^2) \), one has to multiply \(\langle \Delta \ell \rangle_{EM} \) by \(i/e \) and divide by the energy flux of incident EM wave per unit area of the interface \(E_0^2 \cos \theta / 2R \), where \(R = 377 \Omega \) is the vacuum impedance. One has also to take into account that for rectangular form of \(E(z) \), \(a_n/2 = (\Delta \varepsilon / \pi) \sin (\pi \rho_z / \ell) \) with \(\Delta \varepsilon = \lambda^2 (\lambda_1 - \lambda_2) \). Bearing in mind a resonant condition (3), one finally gets the maximal EM wave amplification per pass:

\[
\Gamma = 8 \pi i e R L^3 \sin^2 (\pi \rho_z / \ell) \sin^2 \theta / mc^2 \theta \pi \cos \theta,
\]

where
\[
\mu = \beta^{-4}(\lambda_1^{-2} - \lambda_2^{-2})(1/\beta - \cos \theta)^5 n^{-5} = \lambda_0^{-1}(\lambda_1^{-2} - \lambda_2^{-2})(\cos \theta + n\lambda/\ell).
\]

If \(\lambda = 140 \lambda_0 \), \(\ell = 100 \lambda_0 \), \(\ell_1 = \ell_2 = 50 \lambda_0 \), \(n = 1 \), \(L = 1 \mu m \), \(\lambda_1 = 400 \lambda_0 \), \(\lambda_2 \approx 800 \lambda_0 \), \(\theta = 45^\circ \), and \(i = 5 \times 10^{10} \) A/cm\(^2\) \([4]\) (i.e. beam of 2 \mu m diameter with a current \(\sim 1.5 \times 10^3 \) A\(\lambda\)), one gets an amplification \(\Gamma \approx 5\% \) per pass. The required speed of electrons is \(\beta \approx 0.474 \) which corresponds to energy \(eU = 69 \) KeV. For larger \(\lambda \) the amplification increases drastically. With the mirrors situated outside the superlattice to form a Fabry-Perot resonator to provide feedback, the system becomes a short-wave laser which may transform significant portion of energy of electron beam into coherent radiation. It is obvious that the amplifiers and lasers based on the proposed principle should work in the short pulse regime of operation, with the duration of current pulse being determined by the heating, ionization, diffusion of absorbed electrons, etc. As a rough approximation, the per atom heating rate caused by the energy losses of the electron beam \([11]\), is

\[
(n^\ast/N^\ast)\frac{d\varepsilon}{dt} = 4\pi Z(mv^2)^{-1}\ln(\gamma^2mv^2/e^2\omega)
\]

(15)

where \(n^\ast = i/ev \) is the electron beam density, \(N^\ast \) is the atomic density of the material, \(Z \) is the atomic number. For the parameters mentioned above, the duration of the current pulse must be shorter than \(\sim 10^{-13} \) sec in order for the energy transfer per atom to be of order of \(\sim 1 \) eV or less. One may note though that in the case of ultra-relativistic beams \([4]\) with energy \(\sim 60 \) GeV for the same current, the losses \((15)\) are even greater, such that one needs even shorter pulses. It will probably be hard to obtain such short and powerful pulses, but it may prove worthwhile. However, the first step is to attain spontaneous resonant emission as described in the beginning of this letter. The spontaneous emission can be used as a very narrowband source of radiation by selecting narrow range of angles \([Eq. (4)]\). It should also be noted that the spontaneous radiator intensity depends on the total current in the electron beam unlike the stimulated emission gain which depends on the current density. Since there is no constraint on the current density, the conditions to obtain spontaneous emission are much more relaxed. According to Eqs. (4-6), the electrical current required to observe spontaneous emission with the same spotsize of the beam is \(10^6-10^9 \) less than that required for stimulated emission.

Conclusion

In conclusion, we have demonstrated the feasibility of generating far-ultraviolet and soft X-ray radiation by electron beams with relatively low, non-relativistic energies, traversing the solid-state superlattice composed of very thin periodic layers. The use of low energies is a desirable feature as compared with ultra-relativistic beams. The proposed system can be used as a very efficient noncoherent source of narrowband radiation, and, under special conditions, as an amplifier and laser.

We thankfully appreciate very useful discussions with G. Ascarelli, R. Gunshor, as well as with P. Kelley, A. Calawa, N. Economou, and all participants at the seminar given by A. E. K. at Lincoln Lab, M.I.T.

This work is supported by the US Air Force Office of Scientific Research.

References
7. S. Datta and A. E. Kaplan, to be published elsewhere.
8. Incidentally, this fact brings up a substantial advantage. For the polarization in the plane of incidence, there is an angle θ at which the retroreflection at the layer interfaces vanishes altogether; it is the so called Brewster angle. In our case ($|\Delta\epsilon| << \epsilon$) this angle is $\theta \approx 45^\circ$.